Complex trigonometric functions #
Basic facts and derivatives for the complex trigonometric functions.
Several facts about the real trigonometric functions have the proofs deferred here, rather than
Analysis.SpecialFunctions.Trigonometric.Basic,
as they are most easily proved by appealing to the corresponding fact for complex trigonometric
functions, or require additional imports which are not available in that file.
theorem
Complex.tan_add
{x : ℂ}
{y : ℂ}
(h : ((∀ (k : ℤ), x ≠ (2 * ↑k + 1) * ↑Real.pi / 2) ∧ ∀ (l : ℤ), y ≠ (2 * ↑l + 1) * ↑Real.pi / 2) ∨ (∃ (k : ℤ), x = (2 * ↑k + 1) * ↑Real.pi / 2) ∧ ∃ (l : ℤ), y = (2 * ↑l + 1) * ↑Real.pi / 2)
:
Complex.tan (x + y) = (Complex.tan x + Complex.tan y) / (1 - Complex.tan x * Complex.tan y)
theorem
Complex.tan_add'
{x : ℂ}
{y : ℂ}
(h : (∀ (k : ℤ), x ≠ (2 * ↑k + 1) * ↑Real.pi / 2) ∧ ∀ (l : ℤ), y ≠ (2 * ↑l + 1) * ↑Real.pi / 2)
:
Complex.tan (x + y) = (Complex.tan x + Complex.tan y) / (1 - Complex.tan x * Complex.tan y)
theorem
Complex.tan_two_mul
{z : ℂ}
:
Complex.tan (2 * z) = 2 * Complex.tan z / (1 - Complex.tan z ^ 2)
theorem
Complex.tan_add_mul_I
{x : ℂ}
{y : ℂ}
(h : ((∀ (k : ℤ), x ≠ (2 * ↑k + 1) * ↑Real.pi / 2) ∧ ∀ (l : ℤ), y * Complex.I ≠ (2 * ↑l + 1) * ↑Real.pi / 2) ∨ (∃ (k : ℤ), x = (2 * ↑k + 1) * ↑Real.pi / 2) ∧ ∃ (l : ℤ), y * Complex.I = (2 * ↑l + 1) * ↑Real.pi / 2)
:
Complex.tan (x + y * Complex.I) = (Complex.tan x + Complex.tanh y * Complex.I) / (1 - Complex.tan x * Complex.tanh y * Complex.I)
theorem
Complex.tan_eq
{z : ℂ}
(h : ((∀ (k : ℤ), ↑z.re ≠ (2 * ↑k + 1) * ↑Real.pi / 2) ∧ ∀ (l : ℤ), ↑z.im * Complex.I ≠ (2 * ↑l + 1) * ↑Real.pi / 2) ∨ (∃ (k : ℤ), ↑z.re = (2 * ↑k + 1) * ↑Real.pi / 2) ∧ ∃ (l : ℤ), ↑z.im * Complex.I = (2 * ↑l + 1) * ↑Real.pi / 2)
:
Complex.tan z = (Complex.tan ↑z.re + Complex.tanh ↑z.im * Complex.I) / (1 - Complex.tan ↑z.re * Complex.tanh ↑z.im * Complex.I)
theorem
Complex.cos_eq_iff_quadratic
{z : ℂ}
{w : ℂ}
:
Complex.cos z = w ↔ Complex.exp (z * Complex.I) ^ 2 - 2 * w * Complex.exp (z * Complex.I) + 1 = 0